NGHIÊN CỨU SỬ DỤNG HỢP KIM NHÔM CHẾ TẠO KHUNG SOMI - ROMOOC

RESEARCH TO USE THE ALUMINIUM ALLOY TO PRODUCE FRAME OF TRAILER

Phạm Tất Thắng ${ }^{1, *}$

tÓM tất

Bài báo trình bày nghiên cứu lý thuyết sử dụng một hợp kim nhôm để chế tạo khung sơmi - rớmooc: Tính toán tối ưu kết cấu khung sơmi - rơmooc bằng hợp kim nhôm trên cơ sở một khung bằng thép (vật liệu truyền thống) có sẵn trên thị trường; Tính toán kiểm tra bền khung ở một số chế độ tải trọng.

Từ khóa: Khung xe, sơmi rơ mooc, hợp kim nhôm, Matlab.

ABSTRACT

The paper presents theoretical research for the use of an aluminum alloy for the manufacture of the trailer frame: Optimize the structure of the frame by aluminum alloy on the basis of the frame by steel (traditional material) available on the market; Calculate the strength test of the frame in some load modes.

Keywords: Frame, trailer, aluminium alloy, Matlab.
${ }^{1}$ Khoa Cơ khí, Đại học Giao thông Vận tải
*Email: phamthangdac@yahoo.com.vn
Ngày nhận bài: 10/05/2018
Ngày nhận bài sửa sau phản biện: 31/05/2018
Ngày chấp nhận đăng: 08/06/2018

1. ĐẶT VẤN ĐÊ

Việc làm giảm khối lượng của phương tiện giao thông mang lại nhiểu lợi ích: giảm tiêu thụ nhiên liệu, giảm phát thải khí gây hiệu ứng nhà kính, thỏa mãn các điểu kiện được áp đặt bởi hiệp định Paris về chống biến đổi khí hậu và bảo vệ môi trường năm 2015, cải thiện tính an toàn (giảm quãng đường phanh), giảm hư hỏng cầu đường, cho phép chở được nhiểu hàng hóa và hành khách.

Nhôm được biết đến là một trong các vật liệu nhẹ được sử dụng phổ biến (sau thép) trên các phương tiện giao thông bởi nó có nhiều lợi thế: nhẹ, có nhiều trong tự nhiên, độ dẻo cao, sức bền mòn hóa học tốt, nhưng cơ tính của hợp kim nhôm thấp hơn đáng kể so với thép. Vấn đề đặt ra cẩn phải nghiên cứu tính toán tối ưu để kết cấu khung sơmi - rơmooc bằng hợp kim nhôm đồng thời đảm bảo độ bền cơ học và khối lượng bản thân nhỏ hơn đáng kể so với khung bằng thép.

2. KẾT CẤU KHUNG SƠMI - RƠMOOC

Kết cấu và kích thước tổng thể của khung sơmi rơmooc 20 feet được trình bày trên hình 1.

3. TỐI ƯU KẾT CẤU KHUNG SƠMI - RƠMOOC BẰNG HỢP KIM NHÔM

3.1. Xây dựng bài toán

Chọn vật liệu để chế tạo khung sơmi - rơmooc là hợp kim nhôm AA6082.

Do ứng suất uốn cho phép của hợp kim nhôm AA6082 nhỏ hơn của thép, nên mô men chống uốn tối thiểu của các mặt cắt kết cấu khung bằng hợp kim nhôm AA6082 phải thỏa mãn điều kiện sau:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{uA}}=\frac{\left[\sigma_{u}\right]^{\mathrm{F}}}{\left[\sigma_{u}\right]^{\mathrm{A}}} \mathrm{~W}_{\mathrm{uF}} \tag{1}
\end{equation*}
$$

trong đó: W_{uA} - Mô men chống uốn của mặt cắt vật liệu hợp kim nhôm; $W_{u x F}$ - Mô men chống uốn của mặt cắt vật liệu thép; $\left[\sigma_{u}\right]^{\mathrm{F}}$ - Ứng suất uốn cho phép của thép, $\left[\sigma_{u}\right]^{\mathrm{F}}=$ $560 \mathrm{MPa} ;\left[\sigma_{u}\right]^{\mathrm{A}}$ - Û́ng suất uốn cho phép của hợp kim nhôm AA6082, $\left[\sigma_{u}\right]^{A}=250 \mathrm{MPa}$.

Tùy theo dạng và kích thước mặt cắt mà có mô men chống uốn khác nhau, tức là:

$$
\begin{equation*}
W_{u}=f\left(h, b, t_{c}, t_{b}\right) \tag{2}
\end{equation*}
$$

Với các thông số mặt cắt các dầm bằng thép ($h_{F}, b_{F}, t_{c F}$, t_{bF}) đã biết (theo khung sơmi-rơmooc bằng thép đã có).

Như vậy, vấn đề đặt ra là phải xác định được các thông số mặt cắt các kết cấu khung bằng hợp kim nhôm (h_{A}, b_{A}, $\left.\mathrm{t}_{\mathrm{CA}}, \mathrm{t}_{\mathrm{bA}}\right)$ thỏa mãn điều kiện 1.

Tuy nhiên, với mục tiêu làm giảm nhẹ khối lượng khung sơmi - rơmooc khi sử dụng hợp kim nhôm, phải xác định được các kích thước mặt cắt kết cấu để khối lượng của khung là nhỏ nhất. Khối lượng kết cấu của khung được tính:

$$
\begin{equation*}
m_{A}=\rho_{A} \cdot V_{A}=\rho_{A} I_{A} S_{A}=\rho_{A} l_{A} \cdot f\left(h_{A}, b_{A}, t_{c A}, t_{b A}\right) \tag{3}
\end{equation*}
$$

trong đó: h_{A} - Chiều cao mặt cắt kết cấu bằng hợp kim nhôm; b_{A} - Chiều rộng mặt cắt kết cấu bằng hợp kim nhôm; t_{cA} - Chiều dầy bản cánh mặt cắt kết cấu bằng hợp kim nhôm; t_{bA} - Chiểu dầy bản bụng mặt cắt kết cấu bằng hợp kim nhôm; $\rho_{A}-$ Khối lượng riêng của hợp kim nhôm, $\rho_{\mathrm{A}}=2700 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{S}_{\mathrm{A}}$ - Diện tích mặt cắt ngang kết cấu bằng hợp kim nhôm; V_{A} - Thể tích vật liệu kết cấu bằng hợp kim nhôm; $\mathrm{I}_{\mathrm{A}}-\mathrm{Chiều} \mathrm{dài} \mathrm{dầm} \mathrm{(đã} \mathrm{được} \mathrm{xác} \mathrm{định} \mathrm{ở} \mathrm{trên)}$.

3.4. Kết quả tính toán

Kết quả tính toán tối ưu lần lượt là kích thước mặt cắt ngang của các dầm, các kết cấu chính khung sơmi rơmooc, được trình bày trong bảng 1.

Bảng 1. Kích thước mặt cắt ngang và khối lượng các dầm, kết cấu chính khung sơmi - rớmooc

Thông số	Kết cấu bằng thép	Kết cấu bằng hợp kim nhôm

1. Hai dầm dọc

Dạng mặt cắt ngang của dầm		
Kích thước: $\mathrm{hxbxt} \mathrm{t}_{\mathrm{c}} \mathrm{t}_{\mathrm{b}}(\mathrm{mm})$	$350 \times 140 \times 16 \times 16$	$485 \times 197 \times 20 \times 18$
Mô men chống uốn theo trục $x\left(W_{u x}\right)$ (mm^{3})	959514	2238865
Mô men chống uốn theo trục $\mathrm{y}\left(\mathrm{W}_{\mathrm{uy}}\right)$ (mm^{3})	118101	275570
Diện tích mặt cắt (S) (mm^{2})	9568	15000
Số lượng dầm	2	2
Khốl lượng (kg)	1045	567

2. Các dầm conson

Dạng mặt cắt ngang của dầm		

3. Các dầm ngang liên kết hai dầm dọc

Dạng mặt cắt ngang của dầm

Kích thước: $\mathrm{hx} \times \mathrm{bx} \mathrm{t}_{\mathrm{c}} \mathrm{t}_{\mathrm{b}}(\mathrm{mm})$	$180 \times 80 \times 8 \times 8$	$260 \times 127 \times 9 \times 9$
Mô men chống uốn theo trục $\times\left(W_{\mathrm{ux}}\right)$ $\left(\mathrm{mm}^{3}\right)$	137940	322730
Mô men chống uốn theo trục $\mathrm{y}\left(\mathrm{W}_{\mathrm{u} y}\right)$ $\left(\mathrm{mm}^{3}\right)$	2592	3984
Diện tích mặt cát $(\mathrm{S})\left(\mathrm{mm}^{2}\right)$	5	5
Số lượng dầm	107	57
Khôí lượng (kg)		

4. Các thanh chéo gia cường dẩm conson

Dạng mặt cắt ngang của dầm		
Kích thước: $\mathrm{hxbxt} \mathrm{t}_{\text {x }} \mathrm{t}_{\mathrm{b}}(\mathrm{mm})$	$140 \times 60 \times 6 \times 6$	$200 \times 80 \times 7 \times 7$
Mô men chống uốn theo trục $x\left(W_{u x}\right)$ (mm^{3})		
Mô men chống uốn theo trục $\mathrm{y}\left(\mathrm{W}_{\mathrm{uy}}\right)$ $\left(\mathrm{mm}^{3}\right)$	61183	142760
Diện tích mặt cắt (S) (mm^{2})	1488	2429
Số lượng dầm	6	6
Khối lượng (kg)	61	35

5. Dầm dọc giá trụ đứng

Dạng mặt cắt ngang của dầm		
Kích thước: $\mathrm{hxbxt} \mathrm{c}_{\mathrm{c}} \mathrm{t}_{\mathrm{b}}(\mathrm{mm})$	$160 \times 70 \times 6 \times 6$	$200 \times 80 \times 7 \times 7$
Mô men chống uốn theo trục $x\left(W_{u x}\right)$ $\left(\mathrm{mm}^{3}\right)$	61183	142760
Mô men chống uốn theo trục y ($W_{u y}$) (mm^{3})		
Diện tích mặt cắt (S) (mm^{2})	1488	2429
Số lượng dẩm	2	2
Khố lượng (kg)	61	35
6. Dầm ngang giá trụ đứng		
Dang mặt cắt ngang của dầm		

Kích thước: $\mathrm{hxbxt} \mathrm{t}_{\mathrm{c}} \mathrm{t}_{\mathrm{b}}(\mathrm{mm})$	$140 \times 60 \times 6 \times 6$	$215 \times 70 \times 7 \times 7$
$\begin{aligned} & \text { Mô men chống uốn theo trục } x\left(W_{u x}\right) \\ & \left(\mathrm{mm}^{3}\right) \end{aligned}$	61200	143000
Mô men chống uốn theo trục y (W_{uy}) (mm^{3})		
Diện tích mặt cắt (S) (mm^{2})	1488	2394
Số lượng dầm	2	2
Khối lượng (kg)	20	11
7. Tấm giá đỡ trụ đứng		
Chiểu dầy tấm (t) (mm)	10	22
Diện tích mặt cắt (S) (mm^{2})	1488	2429
Sốl lự̛̣ng tấm	2	2
Khố lượng (kg)	111	86
Tổng khối lượng của khung sơmi (kg)	1635	912
Khối lượng giảm (kg)	723	
Tỷ lệ giảm khối lượng	44,2\%	

Như vậy, bằng việc sử dụng vật liệu hợp kim nhôm (AA6082), có thể làm giảm khối lượng của khung từ 1635 kg (làm bằng thép) xuống 912 kg , tức là giảm 723 kg tương đương giảm 44,2\% khối lượng của khung.

4. TÍNH TOÁN BỀN KHUNG SƠMI - RƠMOOC BẰNG HỢP KIM NHÔM

Sử dụng phần mềm chuyên dụng Hypermesh để tính toán bền với cả khung bằng thép và khung bằng hợp kim nhôm ở hai chế độ tải trọng: Tải trọng tĩnh thẳng đứng do tự trọng và tải trọng tác dụng; Tải trọng dọc trục do lực quán tính khi phanh tác dụng.

4.1. Trường hợp chịu tải tĩnh do tự trọng và tải trọng tác dụng

4.1.1. Khung sơmi - rớmooc bằng thép

Hinh 3. Úng suất uốn khung thép khi chịu tải trọng tĩnh thẳng đứng

Hình 3. Chuyển vị khung thép khi chịu tải trọng tĩnh thả̉ng đứng

4.1.2. Khung sơmi - rơmooc bằng hợp kim nhôm

Hình 4. Úng suất khung bằng hợp kim nhôm chịu tải trọng tĩnh thẳng đứng

Hình 5. Chuyển vị khung bằng hợp kim nhôm chịu tải trọng tĩnh thẳng đứng
4.2. Trường hợp chịu tải trọng dọc trục do lực quán tính khi phanh

4.2.1. Khung sơmi - rơmooc bằng thép

Contour Plot

Analysis system - $2.055 \mathrm{E}+02$
-1.826E+02
$-1.598 \mathrm{E}+02$
$-1.370 \mathrm{E}+02$
-1.141E+02
-9.132E+01
-6.849E+01
-4.566E+01
$-2.283 \mathrm{E}+01$
$\begin{aligned} & \mathrm{Max}=2.055 \mathrm{E}+02 \\ & 2 \mathrm{D} 202142 \end{aligned}$
2D 343341
Y + ${ }^{\text {X }}$

2 P 343341 X
Hinh 6. Ứng suất khung thép chịu lực quán tính khi phanh

Hình 7. Chuyển vị khung thép chịu lực quán tính khi phanh

4.2.2. Khung sơmi - rơmooc bằng hợp kim nhôm

$\mathrm{Min}=40.000 \mathrm{E}+10$
(Thids 2066480
Hình 8. Ứng suất khung hợp kim nhôm chịu lực quán tính khi phanh

Y

Hình 9. Chuyển vị khung hợp kim nhôm chịu lực quán tính khi phanh

Nhận xét:

- Ứng suất và chuyển vị của khung làm bằng hợp kim nhôm đê̂u thỏa mãn điều kiện bển và cứng vững
- Các giá trị về chuyển vị và hệ số dự trữ bền của khung bằng hợp kim nhôm tương đương khung bằng thép.

5. KẾT LUẬN

Kết quả tính toán tối ưu là kết cấu khung sơmi rơmooc 20 feet bằng hợp kim nhôm có khối lượng bản thân giảm $44,2 \%$ so với của khung bằng thép. Đây là mức giảm tương đối lớn mà các nhà sản xuất và khai thác đáng quan tâm.

Phần tính bển cho thấy khung làm bằng hợp kim nhôm đủ bền, các chỉ số sức bền và độ cứng vững tương đương với khung làm bằng thép.

Tuy nhiên cần phải tiếp tục thực hiện các nghiên cứu khác để có thể đưa khung vào sản xuất thực tế: Tính toán bền khung khi chịu tải trọng xoắn; Nghiên cứu các giải pháp kết cấu đảm bảo tính vững chắc, tính công nghệ trong chế tạo phù hợp với đặc tính của hợp kim nhôm; Nghiên cứu thực nghiệm để kiểm nghiệm kết quả tính toán; Nghiên cứu đánh giá chính xác vể hiệu quả kinh tế và bảo vệ môi trường.

TÀI LIỆ THAM KHẢO

[1]. Thái Nguyễn Bạch Liên, Trịnh Chí Thiện, Tô Đức Long, Nguyễn Văn Bang, 1994. Kết cấu tính toán ô tô. NXB GTVT.
[2]. Recent development in Aluminium sheet alloys used in Aerospace, Proc. of Aluminum in the Aerospace Industries, Belgium.
[3]. G. Davies, 2003. Materials for Automobile Bodies. Elsevier Ltd.ISBN 0-7506-5692-1
[4]. CETIM Centre, 2010. L'Aluminium: Foge et frappe à froid.
[5]. Européen Aluminium Association, 2011. L'Aluminium dans les véhicules industriels.
[6]. Audi, 2012. AUDI A2-Carrosserie Conception et fonctionnement Programme autodidactique 239.
[7]. Lycée Raymond LOEWY, 2010. Aluminium et Alliages d’aluminium.

