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ABSTRACT 
The combination of the kernel trick and the least-mean-square (LMS) 

algorithm provides an interesting sample by sample update for an adaptive 
equalizer in reproducing Kernel Hilbert Spaces (RKHS), which is named here the 
KLMS. This paper shows that in the finite training data case, the KLMS algorithm 
is well-posed in RKHS without the addition of an extra regularization term to 
penalize solution norms. In this paper, we propose an algorithm for Kernel 
equalizers based on LMS algorithm with more simple computation, while the 
convergence rate will be adjusted based on the algorithm's control step size. The 
solution can be applied to the equalizers in OFDM satellite systems in order to 
reduce output errors and capacity of computation. 
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TÓM TẮT 
Sự kết hợp của phương pháp kernel với giải thuật bình phương trung bình 

tối thiểu (LMS) cho phép nâng cấp từng mẫu đối với bộ cân bằng thích nghi 
trong không gian tái tạo Hilbert Kernel (RKHS), được gọi là KLMS. Bài báo chứng 
tỏ rằng trong trường hợp số liệu hướng dẫn hữu hạn, giải thuật KLMS thích hợp 
trong không gian RKHS mà không cần thêm một giới hạn ổn định mở rộng. Trong 
bài báo này, một giải thuật được đề xuất cho bộ cân bằng kernel dựa trên LMS 
với việc tính toán đơn giản hơn trong khi tốc độ hội tụ có thể được điều chỉnh dựa 
trên kích thước bước điều khiển của thuật toán. Giải pháp này có thể được áp 
dụng cho bộ cân bằng trong hệ thống thông tin vệ tinh OFDM giúp giảm lỗi đầu 
ra và khối lượng tính toán. 

Từ khóa: Phương pháp kernel; giải thuật LMS; kênh vệ tinh; cân bằng kênh. 
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1. INTRODUCTION 
Nowadays, the OFDM satellite information systems are 

considered to be strong nonlinear systems. Under the 
influence of radio transmission medium, the nonlinearity of 
the channel causes the signal to be intercepted between 
the symbols, ISI, and the interference between the 
subcarriers, ICI. Signal predistortion techniques at the 
transmitters [11] or equalizers at the receivers can be used 

to eliminate these interferences. The proposed control 
algorithms usually use the Volterra series. These algorithms 
are respresented in high order series [8] therefore they are 
extremely complex. Over the past ten years, adaptive 
nonlinear equalizers are being used in satellite channels [8]. 
These equalizers mainly use artificial neural networks [8, 11] 
and RBF networks are the most commonly used method. 
RBF equalizers, with simple structures, have the advantage 
of being adequate for nonlinear channels. However, their 
most basic disadvantage is that only the optimal local root 
can be found. Therefore, the output errors will be very large 
when these equalizers are used in OFDM satellite 
information systems. To overcome this disadvantage, 
kernel equalizers have been proposed with the application 
of kernel method to traditional equalization algorithms for 
the purpose of simplifying computation and thus 
improving the equalization efficiency [6, 7] [9, 10]. 

In this paper, we propose a new equalization method 
using multikernel technique which operates based on 
adaptive KLMS algorithm. Because this method uses the 
gradient principle therefore the computation is simple 
and effective [11]. This equalization algorithm is mainly 
based on least mean squares (LMS) algorithm and is 
kernel standardized accepts consistent criteria for 
directory design [12].  

Basically, the LMS multikernel algorithm is still based on 
gradient princile. However, due to the specificity of the 
multikernel, there are different application hypotheses. In 
[1], to restrain imposing optimal weight, the authors used a 
port fuction softmax ψ �(n), therefore limits the application 
areas of the equalizer. In [2], the authors developed a 
multikernel learning algorithm based on the results of Bach 
et al. 2004 [3] and the extension of Zien and Ong 2007 [13]. 
The optimization tool is based on Shalev-Shwarts and 
Singer 2007 [14]. This is a generic framework for designing 
and analyzing the most statistic gradient descent 
algorithm. However, they are not commonly used for the 
fuctions with strong convexity. Do et al. 2009 [15] proposed 
the Pegasos algorithm, which has relatively good 
convergence with small λ. The disadvantage of this 
algorithm is that it requires knowing the upper limit of the 
optimal root. 
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In this paper, we propose an algorithm for kernel 
equalizers based on LMS algorithm that does not require 
the above factors to make the computation more simple, 
while the convergence rate will be adjusted based on the 
algorithm's control step size. The LMS kernel algorithm 
makes the output error of the equalizer smaller than the 
conventional LMS algorithm, therefore it is consistent with 
the equalizers in OFDM satellite systems. 

The structure of this paper is presented as follow: 
Section 2: Kernel method; Section 3: KLMS equalizer; 
Section 4: Simulation and Section 5: Conclusion. 

2. KERNEL METHOD 
Kernel trick gives an algorithm which uses inner 

products in it’s calculations. We can construct an 
alternative algorithm, by replacing each of the inner 
products with a positive definite kernel function. 

Kernel Function: Given a set X, a 2-variable function  
K : X × X  C is called positive definite kernel function  
(K ≥ 0) provided that for each n  N and for every choice of 
n distinct points {x1,......,xn} ⊆  X the Gram matrix of K 
regarding {x1,......,xn} is positive definite. 

The elements of the Gram Matrix (or kernel Matrix) of K 
regarding {x1,......,xn} are given by the relation: 

(K(xi;xj))i.j = K(xi,xj) for i;j = 1,...,n         (1) 
The Gram Matrix is a Hermitian Matrix i.e. a matrix equal 

to it’s Conjugate Transpose. Such a matrix being Positive 
Definite means that  ≥ 0 for each and every one of it’s 
eigenvalues . 

Kernel Trick: 
Consider a set X and a positive definite (kernel) function 

K : X ×X  R. The RKHS theory ensures: 

 the existence of a corresponding (Reproducing Kernel) 
Hilbert Space H, which is a vector subspace of F (X;R) 
(Moore’s Theorem). 

 the existence of a representation Φ : X  H : Φ(x) = kx 
(feature representation) which maps each element of X to 
an element of H (kx  H is called the reproducing kernel 
function for the point x). 

so that: 

Φ(x);Φ(y)H = kx;kyH = ky(x) = K(x,y) 
Thus: 

 Through the feature map, the kernel trick succeeds in 
transforming a non-linear problem within the set X into a 
linear problem inside the “better" space H . 

 We may, then, solve the linear problem in H, which 
usually is a relatively easy task, while by returning the result 
in space X. We obtain the final, non-linear, solution to our 
original problem. 

Some Kernel functions: 
The most widely used kernel functions include the 

Gaussian kernel: 

K(xi,xj) = e-a||x
i
-x

j
||2          (2) 

as well as the polynomial kernel: 

K(xi,xj) = (x i
 T xj + 1)p                      (3) 

But there are plenty of other choices (e.g. linear kernel, 
exponential kernel, Laplacian kernel etc.) 

Lots of algorithms capable of operating with kernels 
including adaptive filters (Least Mean Squares Algorithm) 
etc. 

3. KLMS EQUALIZERS 
The Channel Equalization Task aims at designing an 

inverse filter which acts upon the filter’s output, xn, thus 
producing the original input signal as close as possible. 

We execute the algorithm NKLMS for the set of examples 
((xn,xn-1,…,xn-k+1),yn-D) 

where k > 0 is the “equalizer’s length" and D the “equalizer’s 
time delay" (present at almost any equalization set up). 

In other words, the equalizer’s result at each time 
instance n corresponds to the estimation of yn-D. 
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Figure 1. Equalization Task 

Motivation: 
Suppose we wish to discover the mechanism of a function 

F : X ⊂  RM  R ( true equalizer) 
having at our disposal just a sequence of example inputs-
outputs 

{(x1,d1),(x2,d2),…,(xn,dn),…} 

(where xn  X ⊂  RM and dn  R for every n  N). 
Objective of a typical Adaptive Learning algorithm: to 

determine, based on the given “training" data, the proper 
input-output relation, fw, member of a parametric class of 
functions H = {fw : X  R, w  R}, so as to minimize the 
value of a predefined loss function L(w). 

L(w) calculates the error between the actual result dn 
and the estimation fw(xn), at every step n. 
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Figure 2. Adaptive Equalizer 
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Stochastic Gradient Descent method: at each instance 
time n = 1;2,…,N the gradient of the mean square error 

-∇L(w) = 2E[(dn - wn-1
Txn)(xn)] = 2E[enxn]      (4) 

approximated by it’s value at every time instance n 

E[enxn] ≈ enxn          (5) 
leads to the step update (or weight-update) equation, 

which, towards the direction of reduction, takes the form: 

wn = wn-1 + enxn          (6) 

Note: parameter  expresses the size of the “learning 
step" towards the direction of the descent. 

The Least-Mean Square Code: 
 w = 0 
 for i = 1 to N  (e.g. N = 5000) 

  f ≡ wT xi 
  e = di -f  (a priori error) 

  w = w + exi 

 end for 
Variation: generated by replacing the last equation of 

the aforementioned iterative process with 

� = � +
��

‖��‖� x�          (7) 

called Normalized LMS. It’s optimal learning rate has been 
proved to be obtained when  = 1. 

Settings for the Kernel LMS algorithm : 

 new hypothesis space: the space of linear functionals 

H2 = {Tw : H  R, Tw((x)) = w;(x)H, w  H} 

 new sequence of examples: {((x1),d1),…,((xn),dn)} 
 determine a function 

f (xn) ≡ Tw((xn)) =< w,f(xn) >H , w  H 
so as to minimize the loss function: 

L(w) ≡ E[|dn -f (xn)|2] = E[|dn - w,(xn)H |2] 

 once more: 

en = dn -f (xn) 

We calculate the Frechet derivative: 

∇L(w) = -2E[en(xn)] 

which again (according to LMS rational...) we approximate 
by it’s value for each time instance n 

∇L(w) = -2en(xn) 

eventually getting, towards the direction of minimization 

wn = wn-1 + en(xn)          (8) 

The Kernel Least-Mean Square Code: 

 Inputs: the data (xn,yn) and their number N 
 Output: the expansion � = ∑ α � K(·; ��)�

 ��� , where 
k = ek 

 Initialization: 
f0 = 0, n: the learning step, : the parameter  of the 

learning step 

Define: vector  = 0, array D = {.} and the parameters of 
the kernel function. 

 for n = 1…N do 

  if n == 1 then 
   fn = 0 

  else 
  Calculate the equalizer output 

 �� = ∑ � �  �(� � , x� )�
 ���  

  end if 
  Calculate the error: en = dn – fn 

  n = en 

 Register the new center un = xn at the center’s 
list, i.e. 

  D = {D,un}, T = {T ;n} 

 end for 
Notes on Kernel LMS algorithm: After N steps of the 

algorithm, the input-output relation is 
� � = � ∑ �� �(� � ) �

� ��         
�(� � ) = � ∑ �� � (� � , � � ) ���

� ��          (9) 
We can, again, use a normalised version: 

� � = � ��� +
�� �

� (� � ,� � )
� (� � )      (10) 

getting the normalized KLMS (NKLMS).(replacing the step 
an = en with an = en/k, where k = K(xn,xn) would have 
already been calculated at some earlier step). 

4. SIMULATIONS 
In order to test the performance of KLMS algorithm we 

consider a typical non-linear channel equalization task. The 
non-linear channel consists of a linear filter 

tn = 0.8yn + 0.7yn-1 
and a memoryless non-linearity 

qn = tn + 0.8tn
2 + 0.7tn

3 
Then, the signal gets effected by additive white 

Gaussian noise being finally observed as xn. Noise level has 
been set equal to 15dB. 

We used 50 sets of 5000 input signal samples each 
(Gaussian random variable with zero mean and unit 
variance) comparing the performance of standard LMS with 
that of KLMS. 

We consider all algorithms in their normalized version. 
The step update parameter was set for optimum results (in 
terms of the steady-state error rate). Time delay was also 
configured for optimum results. 

The learning curve is plotted in Figure 3. We compare 
the performance of the conventional LMS and the KLMS. 
The Gaussian kernel with a = 0.1 is used in the KLMS for 
best results, and l = 5 and D =2. The results are presented in 
Table II; each entry consists of the average and the 
standard deviation for 100 repeated independent tests. The 
results in Table 1 show that, the KLMS outperforms the 
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conventional LMS in terms of the bit error rate (BER) as can 
be expected because the channel is nonlinear. The 
regularization parameter for the LMS and the learning rate 
of KLMS were set for optimal results. 

 
Figure 3. The learning curves of the LMS (η = 0.005) and kernel LMS  

(η = 0.1) in the nonlinear channel equalization (σ = 0.4) 
Table 1. Performance comparison in nce with different noise levels σ 

Algorithms Linear LMS (η = 0.005) KLMS (η=0.1) 

BER (σ = 0.1) 0.162±0.014 0.020±0.012 

BER (σ = 0.4) 0.177±0.012 0.058±0.008 

BER (σ = 0.8) 0.218±0.012 0.130±0.010 

5. CONCLUSIONS 
This paper proposes the KLMS algorithm used in 

Nonlinear Satellite Channel Equalization. Since the update 
equation of the KLMS can be written as inner products, 
KLMS can be efficiently computed in the input space. This 
capability includes modeling of nonlinear systems, which is 
the main reason why the kernel LMS can achieve good 
performance in the nonlinear channel equalization. 

Demonstrated by the experiments, the KLMS has 
general applicability due to its simplicity since it is 
impractical to work with batch mode kernel methods in 
large data sets. The KLMS is very useful in problems like 
nonlinear channel equalization The superiority of KLMS is 
obvious, which was of no surprise as LMS is incapable of 
handling non-linearities. 
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