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ABSTRACT 
Volterra filters, neural networks and Kernel adaptive filters are usually used 

in nonlinear radio channel equalizations. The greatest advantage of these 
approaches is their good performance in equalizing but their high computational 
complexity also limits the convergence rate. Some methods have been proposed 
recently to solve the problem. In this paper, I extend the computational 
complexity reducing solution for RBF equalizer, thereby improve the 
convergence rate. 
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TÓM TẮT 
Cân bằng kênh vô tuyến phi tuyến thường sử dụng bộ lọc Volterrra, mạng 

nơron hoặc bộ lọc thích nghi Kernel. Ưu điểm lớn nhất của chúng là thực hiện cân 
bằng tốt cho các kênh phi tuyến cao, nhưng thường gắn với nhược điểm là độ 
phức tạp tính toán khá cao dẫn tới hạn chế tốc độ hội tụ. Gần đây một số tác giả 
đã đề xuất giải pháp giảm độ phức tạp tính toán. Trong bài báo này, tác giả mở 
rộng giải pháp giảm độ phức tạp tính toán cho bộ cân bằng neuron RBF, qua đó 
cải thiện tốc độ hội tụ của bộ cân bằng. 

Từ khóa: Cân bằng thích nghi, lọc RBF , phương pháp kernel. 
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1. INTRODUCTION 

In recent years, the generation of new transmission 
technologies such as MIMO, OFDM makes the nonlinear 
characteristic of radio channels evident, especially in 
satellite transmission. Nonlinear distortion therefore 
becomes a imperative problem.  

One of the solutions is to use equalizers, which well 
solve the problem of the nonlinear channels. At first, the 
equalizers use the Volterra filters with their algorithm 
described by Volterra polynomial [1]. The greatest 
advantage of this method is its ability to equal channels 
with arbitrary nonlinear order, however, its computation is 

extremely complex due to the high-order polynomials. 
Recently, equalizers using RBF neural network has been 
taken into account [2,3]. Their structures are simple but 
their computational complexity are high and they can only 
obtain local optimization.  In this paper, we propose a 
solution to overcome the problem of both methods by 
using Gauss Kernel methods. Our research method based 
on theoretical computation and simulation verification. 

The following content is organized as follow:  
Section 2: Kernel Hilbert space regeneration,  
Section 3: Computational complexity reduction for the 
Gauss RBF equalizer,  Section 4: Simulation results and 
Section 5: Conclusion. 

2. KERNEL HILBERT SPACE REGENERATION 
Hilbert space is a scalar product space with orthogonal 

normalized basic   1k k
x 


, therefore the vectors do not need 

to be in the initial scalar product space but still can be 
performed in this form: 
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We can say x is developed on the basis of   1k k
x 


; ak is 

the coefficient of the expression. 
We define a new vector: 
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When n > m, we have vector ym  is similar to (2); the 
square of the Euclidean distance between yn and ym is: 
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Since   1k k
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 is orthonormal, we have: 
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The series in (3) will converge if  {ak}meet the conditions 
as below: 

. ,

.

2

1

2

1

1

2

n

k
k m

m

k
k

a n m

a

 



  

 




  

In other words,    1
yk k




 is a Cauchy series. Therefrom 

we have an important conclusion: “The scalar product space 
H is adequate if every Cauchy vector series taken from H 
converge to a limitation in H, the adequate scalar product 
space is so called the Hilbert space”. 

In 1950, Aronszajn [3] gave a conception which defined 
Mercer Kernel is a consecutive symmetric positively specific 
function : xk U U   , U is the output region and also the 
subset of L  . There are many Kernel types, in this paper 
we take into account two common Kernel functions as 
below: 

Gaussian Kernel: 

   , ' exp '
2u u u uk a    (4) 

This exponential function is often used in RBF neural 
equalizers. 

Kernel polynomial: 

   , ' ' 1u u u u
pTk     (5) 

This function is often used in Volterra equalization. 
The Kernel function has some properties: 
Assume that there are two functions h(.) and g(.) in 

space H which are defined as below: 
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Here ai, bj is the expansion coefficients, ,c ci j U  . We 

have: 
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satisfies the conditions: 
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From (6), (7), (8) and set    . ,.g k u  we have: 
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The expression in (9) is so called the regenerative 
attribute and the Kernel  , 'k u u  expresses a function of 

two vectors: , 'u u U  is called the regenerative Kernel of 
the vector sapce H. 

On the basis of the above propeties, we express the 
Mercer theorem [Aronszajn, 1950]: The Kernel regenerative 
is expanded as below: 
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Here ,i i   are proper values and proper functions 
respectively. The proper values are not negative. Therefore 
we have structure of the mapping φ as below: 

     
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3. COMPUTATIONAL COMPLEXITY REDUCTION FOR THE 
GAUSS RBF EQUALIZER 

Assume that input signal of the RBF euqalizer u(n) is 
transformed into a characteristic space with  depth number 
F equals to function φ(u). The weight of the signal 
traversing the equalizer is c. The ouput vector [4]: 

   Tf u u c   (13) 

Assume that weight vector of the equalizer is expressed 
as a linear combination of training vectors   jy   
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yj is a subset of xl, αj is the weight of yj respectively. 
Therefore we can write the output of the equalizer from 
(13) as: 
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In the RBF equalizer, we consider the Gaussian RBF: 

   , exp
2k a b a b     (16) 

Assume that vectors u, c are expressed as below: 
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From (13), (14), (15) and from instance time n we have:  
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Combine with the Kernel fuction: 

      , .
Tk u c u c     
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Then we achieve:  
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Here 

   , , , ,1
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From (16) we have: 

     , exp exp
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Use hn from (21) and the relationship between (16) and 
(22) we have: 
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From (23) we have some remarks: 
+  In the expression (23) there are 3 comlumns with the 

components as below:  

, , , , ,2 1 2T T T
n j n n j ju y u u y y j m    

+ The components of the first column and the second 
column contains un and they are updated over instant 
time n. 

+ To compute the first column T
n ju y  we have to 

compute m scalar products at each time step n. 
+ In the second column we only have to define one 

scalar product T
n nu u   

+ The third column 3 only contains the scalar product of 
history output vectors in the dictionary: 

 , , ,1 2T
j jy y j m   therefore we can save the memory 

space and the number of computations. 
The computation algorithm is shown as below: 
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     End 
 End 
Here “1” is a vector with length m, its components are 1. 

4. SIMULATION RESULTS  
In this section we use simulation method to evaluate 

the computational complexity reducing solution by using 
Kernel method for the Gauss RBF equalizer. The input signal 
is described as below: 
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The initial value of 1 2,x x   is within  ,0 1 . The input 

signal order M is 4, AWGN noise with 40dB SNR. The 
threshold value μ0 = 0.8, the signal length is 10000. The 
coefficient value in expression (24) is changed at n = 4000 
to express the tracing ability. 

Our evaluation is based on mean squared error (MSE). 
The used traning algorithm is KNLMS as proposed and we 
make a comparision to linear NLMS and conventionnal 
KNLSM. The simulation is done with mmax = 32. 

 
Figure 1. The comparison between the convergence characteristics of linear 

NLMS, conventional KNLMS and the proposed KNLMS method 

The simulation result in Figure 1 shows that the 
convergence characteristic of the proposed method is 
similar to conventional KNLMS. Table 1 statistics the 
required processing time to update the filter weights. Note 
that with conventional KNLMS, the update time varies from 
filter order therefore the average time values are showed in 
the table. 

Table 1. The computation time comparison 

Algoritms Required time for updating weights once (s) 
NLMS 26.0 
Conventional KNLMS 103.6 
Proposed KNLMS  40.0 
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We can see that the computation time of proposed 
method is less than half of the traditional method. Note 
that this is a huge decrease since the traditional method 
requires a higher filter order. It shows that by choosing the 
optimal orders, the proposed method can be executed 
with lower computational complexity. 

5. CONCLUSION 
In this paper, we proposed a complexity reduction for 

nonlinear Gaussian RBF equalizer. Our method are based 
on the symmetry characteristic of the Kernel function and 
the scalar product characteristic in the Hilbert space to 
reduce the number of computations. By theoretical 
method combining with simulation method, this paper has 
proved the ability to reduce the computational complexity, 
thereby making the convergence rate of the equalizers 
increased compares to the previous RBF equalizers. 

 
REFERENCES 
[1]. H. Zhao and J. Zhang, "A Novel Adaptive Equalizer with DCT Domain 

Second-Order Volterra Series for Nonlinear channel," Innovative Computing, 
Information and Control, 2007. ICICIC '07. Second International Conference on, 
Kumamoto, 2007, pp. 568-568. 

[2]. W. Liu, P. P. Pokharel, and J. C. Pr´ıncipe, “The kernel leastmean-square 
algorithm,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 543–554, 
2008. 

[3]. W. Liu, J. C. Pr´ıncipe, and S. Haykin, Kernel Adaptive Filtering: A 
Comprehensive Introduction, Jonh Wiley & Sons, New-York, 2010. 

[4]. Kiyoshi Nishikawa and koji Makizaki, “Fix order implementation method 
of kernel adaptive filters with lower computational complexity,” APSIPA ASC, 
2011. 

[5]. W. D. Parreira, J.-C. M. Bermudez, C. Richard, and J.-Y. Tourneret, 
“Stochastic behavior analysis of the Gaussian kernel-least-mean-square 
algorithm,” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2208–
2222, 2012. 

[6]. C. Richard and J.-C. M. Bermudez, “Closed-form conditions for 
convergence of the gaussian kernel-least-mean-square algorithm,” in Proc. 
Asilomar, Pacific Grove, CA, USA, Nov. 2012. 

[7]. W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary, “Kernel LMS 
algorithm with forward-backward splitting for dictionary learning,” in Proc. IEEE 
ICASSP, Vancouver, Canada, 2013, pp. 5735–5739. 

[8]. W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary learning for 
kernel LMS,” IEEE Transactions on Signal Processing, vol. 62, no. 11, pp. 2765–
2777, 2014. 

[9]. J. Chen, W. Gao, C. Richard, and J.-C. M. Bermudez, “Convergence 
analysis of kernel LMS algorithm with pre-tuned dictionary,” in Proc. IEEE 
ICASSP, Florence, Italia, May 2014. 

[10]. J. Chen, C. Richard, J.-C. M. Bermudez, and P. Honeine, “Variants of 
non-negative least-mean-square algorithm and convergence analysis,” Tech. 
Rep., University of Nice SophiaAntipolis, France, 2014. Available at 
http://www.cedricrichard.fr/Articles/chen2013variants.pdf. 

[11]. J. Chen, J.-C. M. Bermudez, and C. Richard, “Steady-state performance 
of non-negative least-mean-square algorithm and its variants,” IEEE Signal 
Processing Letters, 2014. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




