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GAUSS RBF EQUALIZER WITH LOW COMPUTATIONAL
COMPLEXITY BY KERNEL METHOD

PHUONG PHAP KERNEL CHO BO CAN BANG THICH NG PHI TUYEN DA THUC

VO D0 PHUC TAP TINH TOAN THAP

ABSTRACT

Volterra filters, neural networks and Kemel adaptive filters are usually used
in nonlinear radio channel equalizations. The greatest advantage of these
approaches is their good performance in equalizing but their high computational
complexity also limits the convergence rate. Some methods have been proposed
recently to solve the problem. In this paper, | extend the computational
complexity reducing solution for RBF equalizer, thereby improve the
convergence rate.
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TOM TAT

Can bang kénh v tuyén phi tuyén thudng st dung bo loc Volterrra, mang
noron hoéc bd loc thich nghi Kernel. Uu diém I6n nhét clia chiing la thuc hién can
béng tdt cho céc kénh phi tuyén cao, nhung thdng gan véi nhuroe diém 1 do
phirc tap tinh toan kha cao dan t6i han ché tdc do hoi tu. Gan day mot s6 tac gia
da dé xuat gii phap giam do phic tap tinh toan. Trong bai bao nay, tac gid md
rng gidi phap giam do phikc tap tinh todn cho bd can bang neuron RBF, qua do
cai thién t6c dd hoi tu clia bd cén bang.

Tirkhda: Can béng thich nghi, loc RBF, phirong phép kernel.
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1. INTRODUCTION

In recent years, the generation of new transmission
technologies such as MIMO, OFDM makes the nonlinear
characteristic of radio channels evident, especially in
satellite transmission. Nonlinear distortion therefore
becomes a imperative problem.

One of the solutions is to use equalizers, which well
solve the problem of the nonlinear channels. At first, the
equalizers use the Volterra filters with their algorithm
described by Volterra polynomial [1]. The greatest
advantage of this method is its ability to equal channels
with arbitrary nonlinear order, however, its computation is
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extremely complex due to the high-order polynomials.
Recently, equalizers using RBF neural network has been
taken into account [2,3]. Their structures are simple but
their computational complexity are high and they can only
obtain local optimization. In this paper, we propose a
solution to overcome the problem of both methods by
using Gauss Kernel methods. Our research method based
on theoretical computation and simulation verification.

The following content is organized as follow:
Section 2. Kernel Hilbert space regeneration,
Section 3: Computational complexity reduction for the
Gauss RBF equalizer, Section 4. Simulation results and
Section 5: Conclusion.

2. KERNEL HILBERT SPACE REGENERATION

Hilbert space is a scalar product space with orthogonal
normalized basic {x,}, . , therefore the vectors do not need
to be in the initial scalar product space but still can be
performed in this form:

0

X=X, 1)
k=1
We can say x is developed on the basis of {x,} " ; ais
the coefficient of the expression.
We define a new vector:
Yo = 23X, )
k=1

When n > m, we have vector y,, is similar to (2); the
square of the Euclidean distance betweeny, andy,, is:

Zakxk_zakxk Z a Xy
k=1 k=1

k=m+1
n
2,2
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k=m+1
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n

2 2

= 2 &[]
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Since {x,},, is orthonormal, we have:

e =yal" =2 & @3)

k=m+1
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The series in (3) will converge if {a,}meet the conditions
as below:

n
1L Y a—»o nm-oo
k=m+1
m
2. Zaﬁ <0
k=1

In other words, {y,}, , is a Cauchy series. Therefrom

we have an important conclusion: “The scalar product space
H is adequate if every Cauchy vector series taken from H
converge to a limitation in H, the adequate scalar product
space is so called the Hilbert space”.

In 1950, Aronszajn [3] gave a conception which defined
Mercer Kernel is a consecutive symmetric positively specific
function k :UxU — R, U is the output region and also the

subset of R" . There are many Kernel types, in this paper
we take into account two common Kernel functions as
below:

Gaussian Kernel:
k(u,u') =exp(—a||u—u’||2) @)

This exponential function is often used in RBF neural
equalizers.

Kernel polynomial:
k(uu')= (uTu’+1)p (5)
This function is often used in Volterra equalization.

The Kernel function has some properties:

Assume that there are two functions h() and g() in
space Hwhich are defined as below:

h=ilaik(ci,-) ©)

o-Sur(e ) »

Here a, b; is the expansion coefficients, c,,C, eU . We
have:

(n, 9>='Zia.k( .. )b, ®)

i=1 j=1

satisfies the conditions:

(n.9) = (g, m)s((cf +dg).h) =
[ =(t.1) =0

From (6), (7), (8) and setg(.) =k (u
(n k(1))=Y ak(e,0)=h(u) ©

The expression in (9) is so called the regenerative
attribute and the Kernel k(u,u’) expresses a function of

c(f,h)+d(g,h);

,.) we have:
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two vectors: u,u'eU is called the regenerative Kernel of
the vector sapce H.

On the basis of the above propeties, we express the
Mercer theorem [Aronszajn, 1950]: The Kernel regenerative
is expanded as below:;

ELIOPIC

Here ¢,,¢4 are proper values and proper functions

respectively. The proper values are not negative. Therefore
we have structure of the mapping @ as below:

p:U>F
¢(u) :|: gl(”l(“)a S0, (U),i|

o(u) p(u)=k(uu) (12)
3. COMPUTATIONAL COMPLEXITY REDUCTION FOR THE
GAUSS RBF EQUALIZER

Assume that input signal of the RBF euqalizer u(n) is
transformed into a characteristic space with depth number
F equals to function @(u). The weight of the signal
traversing the equalizer is c. The ouput vector [4]:

f(u)=¢' (u)e (13)
Assume that weight vector of the equalizer is expressed
as a linear combination of training vectors ¢(y, )

(10)

(11)

(14)

y; is a subset of x, o is the weight of y; respectively.
Therefore we can write the output of the equalizer from
(13) as:

f(u)=3 (" (u)e(y,))

(15)
j=1
In the RBF equalizer, we consider the Gaussian RBF:
k(ab)=exp(~[a-b[) (16)
Assume that vectors u, c are expressed as below:
u, =[u(n),....u(n-M+1)] (17)
o [ (18)

From (13), (14

o) o(v)]
_|o(w)" o(y.)

), (15) and from instance time n we have:

(19)

o(u,) ;/J(ym)

Combine with the Kernel fuction:

k(u,c)zgo(u)T o(c)
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Then we achieve:

k(uy.y:) '
f(u,) = k(“”:’yZ) a=ha (20)
k(Uy.Yom)
Here
by =[K Uy Ys)seoeok (U Yo ) | (21)
From (16) we have:
k(a,b)=exp(—||a—b||2)=exp(2aTb—aTa—bTb) (22)

Use h, from (21) and the relationship between (16) and
(22) we have;

T T T
2un Y —U U, =Y Y,
T T T
2un Y, —UU, =Y, Y,

h, =exp (23)

ZUI Y — U;Un - y;ym
From (23) we have some remarks:

+ In the expression (23) there are 3 comlumns with the
components as below:
T

2u.r:yj’unun> y.erJ j:]?27"‘7m

+ The components of the first column and the second
column contains u, and they are updated over instant
time n.

+ To compute the first column ulyj we have to
compute m scalar products at each time step n.

+ In the second column we only have to define one
scalar product uu,

+ The third column 3 only contains the scalar product of
history output  vectors in the dictionary:

y;y; (i=12,...,m) therefore we can save the memory
space and the number of computations.
The computation algorithm is shown as below:
Begin

h=1 =0 m=1
Herem=2,3,...

T
Un _unun

2
h, = exp[Dl1 { ﬂ —UnlJ

If maximum value |h, (j)|>

Dn = Dn—l

Else
m=m+1
h
hn :{ n}
1
X
Dn :Dn—lu{ n}
Xn
End
End

Here “1” is a vector with length m, its components are 1.
4. SIMULATION RESULTS

In this section we use simulation method to evaluate
the computational complexity reducing solution by using
Kernel method for the Gauss RBF equalizer. The input signal
is described as below:

u, = (0, 8— 0,5exp(—u;§1)) X, 4
(24)
- (0,3 + O,Qexp(—uﬁfl)) X, , +0,1sin(x,, )

The initial value of x_,,x_, is within (0,1). The input

signal order M is 4, AWGN noise with 40dB SNR. The
threshold value p, = 0.8, the signal length is 10000. The
coefficient value in expression (24) is changed at n = 4000
to express the tracing ability.

Our evaluation is based on mean squared error (MSE).
The used traning algorithm is KNLMS as proposed and we
make a comparision to linear NLMS and conventionnal
KNLSM. The simulation is done with m,,,, = 32.

—_— 'NLMS
0 —— KNLMS (Conventional)
—— KNLMS (Proposed)

Mean Square Error (dB)

0 2000 4000 6000 8000
Iteration

Figure 1. The comparison between the convergence characteristics of linear
NLMS, conventional KNLMS and the proposed KNLMS method

The simulation result in Figure 1 shows that the
convergence characteristic of the proposed method is
similar to conventional KNLMS. Table 1 statistics the
required processing time to update the filter weights. Note
that with conventional KNLMS, the update time varies from
filter order therefore the average time values are showed in
the table.

Table 1. The computation time comparison

Algoritms Required time for updating weights once (us)
NLMS 26.0
Conventional KNLMS 103.6
Proposed KNLMS 40.0
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We can see that the computation time of proposed
method is less than half of the traditional method. Note
that this is a huge decrease since the traditional method
requires a higher filter order. It shows that by choosing the
optimal orders, the proposed method can be executed
with lower computational complexity.

5. CONCLUSION

In this paper, we proposed a complexity reduction for
nonlinear Gaussian RBF equalizer. Our method are based
on the symmetry characteristic of the Kernel function and
the scalar product characteristic in the Hilbert space to
reduce the number of computations. By theoretical
method combining with simulation method, this paper has
proved the ability to reduce the computational complexity,
thereby making the convergence rate of the equalizers
increased compares to the previous RBF equalizers.
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